Technical Report 2008-003 A Sequential Monte-Carlo and DSmT Based Approach for Conflict Handling in case of Multiple target Tracking
نویسندگان
چکیده
In this paper, we propose an efficient and robust multiple target tracking method based on particles filtering and Dezert-Smarandache theory. A model of cue combination is designed with plausible and paradoxical reasoning. The proposed model can resolve the conflict and paradoxes that arise between measured cues due to the partial or total occlusion. Experimental results demonstrate the efficiency and accuracy of the model in case of tracking with multiple cue.
منابع مشابه
Integrating robust likelihoods with Monte-Carlo filters for multi-target tracking
In this paper, a dynamic multi-modal fusion scheme for tracking multiple targets with Monte-Carlo filters is presented, with the goal of achieving robustness by combining complimentary likelihoods based on color and foreground segmentation. The generality of the proposed approach allows defining the measurements on different levels (pixel-, featureand object-space) through dynamic data fusion. ...
متن کاملRao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
We propose a new Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets in presence of clutter and false alarm measurements. The advantage of the new approach is that Rao-Blackwellization allows the estimation algorithm to be partitioned into single target tracking and data association sub-problems, where the single target tracking sub-problem can be solved by Kalman filt...
متن کاملSequential Monte Carlo Methods for Joint Detection and Tracking of Multiaspect Targets in Infrared Radar Images
We present in this paper a sequential Monte Carlo methodology for joint detection and tracking of a multiaspect target in image sequences. Unlike the traditional contact/association approach found in the literature, the proposed methodology enables integrated, multiframe target detection and tracking incorporating the statistical models for target aspect, target motion, and background clutter. ...
متن کاملTracking Variable Number of Targets Using Sequential Monte Methods
In this paper, we present a new approach for online joint detection and tracking for multiple targets, using sequential Monte Carlo methods. We first use an observation clustering algorithm to find some regions of interest (ROIs), and then propose to initiate a new target or remove an existing track, based on the persistence information of these ROIs over time. In addition, we also integrate a ...
متن کاملScheduling Multiple Sensors Using Particle Filters in Target Tracking
A critical component of a multi-sensor system is sensor scheduling to optimize system performance under constraints (e.g. power, bandwidth, and computation). In this paper, we apply particle filter sequential Monte Carlo methods to implement multiple sensor scheduling for target tracking. Under the constraint that only one sensor can be used at each time step, we select a sequence of sensor use...
متن کامل